Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.891
Filtrar
1.
Eur J Histochem ; 68(1)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38568207

RESUMEN

During the aging process, cells can enter cellular senescence, a state in which cells leave the cell cycle but remain viable. This mechanism is thought to protect tissues from propagation of damaged cells and the number of senescent cells has been shown to increase with age. The speed of aging determines the lifespan of a species and it varies significantly in different species. To assess the progress of cellular senescence during lifetime, we performed a comparative longitudinal study using histochemical detection of the senescence-associated beta-galactosidase as senescence marker to map the staining patterns in organs of the long-lived zebrafish and the short-lived turquoise killifish using light- and electron microscopy. We compared age stages corresponding to human stages of newborn, childhood, adolescence, adult and old age. We found tissue-specific but conserved signal patterns with respect to organ distribution. However, we found dramatic differences in the onset of tissue staining. The stained zebrafish organs show little to no signal at newborn age followed by a gradual increase in signal intensity, whereas the organs of the short-lived killifish show an early onset of staining already at newborn stage, which remains conspicuous at all age stages. The most prominent signal was found in liver, intestine, kidney and heart, with the latter showing the most prominent interspecies divergence in onset of staining and in staining intensity. In addition, we found staining predominantly in epithelial cells, some of which are post-mitotic, such as the intestinal epithelial lining. We hypothesize that the association of the strong and early-onset signal pattern in the short-lived killifish is consistent with a protective mechanism in a fast growing species. Furthermore, we believe that staining in post-mitotic cells may play a role in maintaining tissue integrity, suggesting different roles for cellular senescence during life.


Asunto(s)
Galactosidasas , Killifishes , Longevidad , Humanos , Adolescente , Adulto , Animales , Recién Nacido , Niño , Pez Cebra , Estudios Longitudinales , 60487
2.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38664021

RESUMEN

Mitochondrial transcription factor A, TFAM, is essential for mitochondrial function. We examined the effects of overexpressing the TFAM gene in mice. Two types of transgenic mice were created: TFAM heterozygous (TFAM Tg) and homozygous (TFAM Tg/Tg) mice. TFAM Tg/Tg mice were smaller and leaner notably with longer lifespans. In skeletal muscle, TFAM overexpression changed gene and protein expression in mitochondrial respiratory chain complexes, with down-regulation in complexes 1, 3, and 4 and up-regulation in complexes 2 and 5. The iMPAQT analysis combined with metabolomics was able to clearly separate the metabolomic features of the three types of mice, with increased degradation of fatty acids and branched-chain amino acids and decreased glycolysis in homozygotes. Consistent with these observations, comprehensive gene expression analysis revealed signs of mitochondrial stress, with elevation of genes associated with the integrated and mitochondrial stress responses, including Atf4, Fgf21, and Gdf15. These found that mitohormesis develops and metabolic shifts in skeletal muscle occur as an adaptive strategy.


Asunto(s)
Proteínas de Unión al ADN , Proteínas del Grupo de Alta Movilidad , Longevidad , Ratones Transgénicos , Proteínas Mitocondriales , Músculo Esquelético , Factores de Transcripción , Animales , Ratones , Músculo Esquelético/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Longevidad/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Masculino , Metabolómica/métodos , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Regulación de la Expresión Génica
3.
Fam Med Community Health ; 12(Suppl 3)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609090

RESUMEN

Storylines of Family Medicine is a 12-part series of thematically linked mini-essays with accompanying illustrations that explore the many dimensions of family medicine as interpreted by individual family physicians and medical educators in the USA and elsewhere around the world. In 'VII: family medicine across the lifespan', authors address the following themes: 'Family medicine maternity care', 'Seeing children as patients brings joy to work', 'Family medicine and the care of adolescents', 'Reproductive healthcare across the lifespan', 'Men's health', 'Care of older adults', and 'Being with dying'. May readers appreciate the range of family medicine in these essays.


Asunto(s)
Medicina Familiar y Comunitaria , Servicios de Salud Materna , Embarazo , Adolescente , Niño , Humanos , Femenino , Anciano , Longevidad , Médicos de Familia , Instituciones de Salud
4.
Aging (Albany NY) ; 16(7): 5829-5855, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38613792

RESUMEN

Aging is characterized by declining health that results in decreased cellular resilience and neuromuscular function. The relationship between lifespan and health, and the influence of genetic background on that relationship, has important implications in the development of pharmacological anti-aging interventions. Here we assessed swimming performance as well as survival under thermal and oxidative stress across a nematode genetic diversity test panel to evaluate health effects for three compounds previously studied in the Caenorhabditis Intervention Testing Program and thought to promote longevity in different ways - NP1 (nitrophenyl piperazine-containing compound 1), propyl gallate, and resveratrol. Overall, we find the relationships among median lifespan, oxidative stress resistance, thermotolerance, and mobility vigor to be complex. We show that oxidative stress resistance and thermotolerance vary with compound intervention, genetic background, and age. The effects of tested compounds on swimming locomotion, in contrast, are largely species-specific. In this study, thermotolerance, but not oxidative stress or swimming ability, correlates with lifespan. Notably, some compounds exert strong impact on some health measures without an equally strong impact on lifespan. Our results demonstrate the importance of assessing health and lifespan across genetic backgrounds in the effort to identify reproducible anti-aging interventions, with data underscoring how personalized treatments might be required to optimize health benefits.


Asunto(s)
Caenorhabditis elegans , Longevidad , Estrés Oxidativo , Animales , Longevidad/efectos de los fármacos , Longevidad/genética , Estrés Oxidativo/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Resveratrol/farmacología , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Antecedentes Genéticos , Natación , Piperazinas/farmacología , Estilbenos/farmacología
5.
J Exp Med ; 221(5)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38634804

RESUMEN

The creation of synthetic T cell states has captivated the field of cell-based therapies. Wang et al. (https://doi.org/10.1084/jem.20232368) describe how disruption of BCOR and ZC3H12A unleashes anti-tumor T cells with unprecedented lifespan and killer instinct. Are we witnessing the birth of immortal super-soldiers in medicine?


Asunto(s)
Personal Militar , Humanos , Linfocitos T , Longevidad
6.
Cell Rep ; 43(4): 114021, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38564335

RESUMEN

The red sea urchin (Mesocentrotus franciscanus) is one of the Earth's longest-living animals, reported to live more than 100 years with indeterminate growth, life-long reproduction, and no increase in mortality rate with age. To understand the genetic underpinnings of longevity and negligible aging, we constructed a chromosome-level assembly of the red sea urchin genome and compared it to that of short-lived sea urchin species. Genome-wide syntenic alignments identified chromosome rearrangements that distinguish short- and long-lived species. Expanded gene families in long-lived species play a role in innate immunity, sensory nervous system, and genome stability. An integrated network of genes under positive selection in the red sea urchin was involved in genomic regulation, mRNA fidelity, protein homeostasis, and mitochondrial function. Our results implicated known longevity genes in sea urchin longevity but also revealed distinct molecular signatures that may promote long-term maintenance of tissue homeostasis, disease resistance, and negligible aging.


Asunto(s)
Envejecimiento , Genoma , Longevidad , Erizos de Mar , Animales , Longevidad/genética , Envejecimiento/genética , Erizos de Mar/genética , Genómica/métodos
7.
Aging (Albany NY) ; 16(7): 6384-6416, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38575325

RESUMEN

BACKGROUND: COVID-19 pandemic poses a heavy burden on public health and accounts for substantial mortality and morbidity. Proteins are building blocks of life, but specific proteins causally related to COVID-19, healthspan and lifespan have not been systematically examined. METHODS: We conducted a Mendelian randomization study to assess the effects of 1,361 plasma proteins on COVID-19, healthspan and lifespan, using large GWAS of severe COVID-19 (up to 13,769 cases and 1,072,442 controls), COVID-19 hospitalization (32,519 cases and 2,062,805 controls) and SARS-COV2 infection (122,616 cases and 2,475,240 controls), healthspan (n = 300,477) and parental lifespan (~0.8 million of European ancestry). RESULTS: We identified 35, 43, and 63 proteins for severe COVID, COVID-19 hospitalization, and SARS-COV2 infection, and 4, 32, and 19 proteins for healthspan, father's attained age, and mother's attained age. In addition to some proteins reported previously, such as SFTPD related to severe COVID-19, we identified novel proteins involved in inflammation and immunity (such as ICAM-2 and ICAM-5 which affect COVID-19 risk, CXCL9, HLA-DRA and LILRB4 for healthspan and lifespan), apoptosis (such as FGFR2 and ERBB4 which affect COVID-19 risk and FOXO3 which affect lifespan) and metabolism (such as PCSK9 which lowers lifespan). We found 2, 2 and 3 proteins shared between COVID-19 and healthspan/lifespan, such as CXADR and LEFTY2, shared between severe COVID-19 and healthspan/lifespan. Three proteins affecting COVID-19 and seven proteins affecting healthspan/lifespan are targeted by existing drugs. CONCLUSIONS: Our study provided novel insights into protein targets affecting COVID-19, healthspan and lifespan, with implications for developing new treatment and drug repurposing.


Asunto(s)
COVID-19 , Longevidad , Análisis de la Aleatorización Mendeliana , Proteómica , SARS-CoV-2 , Humanos , COVID-19/genética , Longevidad/genética , Estudio de Asociación del Genoma Completo , Femenino , Masculino , Hospitalización
8.
Proc Natl Acad Sci U S A ; 121(16): e2320623121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38607930

RESUMEN

Fine root lifespan is a critical trait associated with contrasting root strategies of resource acquisition and protection. Yet, its position within the multidimensional "root economics space" synthesizing global root economics strategies is largely uncertain, and it is rarely represented in frameworks integrating plant trait variations. Here, we compiled the most comprehensive dataset of absorptive median root lifespan (MRL) data including 98 observations from 79 woody species using (mini-)rhizotrons across 40 sites and linked MRL to other plant traits to address questions of the regulators of MRL at large spatial scales. We demonstrate that MRL not only decreases with plant investment in root nitrogen (associated with more metabolically active tissues) but also increases with construction of larger diameter roots which is often associated with greater plant reliance on mycorrhizal symbionts. Although theories linking organ structure and function suggest that root traits should play a role in modulating MRL, we found no correlation between root traits associated with structural defense (root tissue density and specific root length) and MRL. Moreover, fine root and leaf lifespan were globally unrelated, except among evergreen species, suggesting contrasting evolutionary selection between leaves and roots facing contrasting environmental influences above vs. belowground. At large geographic scales, MRL was typically longer at sites with lower mean annual temperature and higher mean annual precipitation. Overall, this synthesis uncovered several key ecophysiological covariates and environmental drivers of MRL, highlighting broad avenues for accurate parametrization of global biogeochemical models and the understanding of ecosystem response to global climate change.


Asunto(s)
Ecosistema , Longevidad , Evolución Biológica , Cambio Climático , Cabeza
9.
Life Sci ; 345: 122606, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574884

RESUMEN

AIMS: Alzheimer's disease (AD), the most common neurodegenerative disorder associated with aging, is characterized by amyloid-ß (Aß) plaques in the hippocampus. Ergosterol, a mushroom sterol, exhibits neuroprotective activities; however, the underlying mechanisms of ergosterol in promoting neurite outgrowth and preventing Aß-associated aging have never been investigated. We aim to determine the beneficial activities of ergosterol in neuronal cells and Caenorhabditis elegans (C. elegans). MATERIALS AND METHODS: The neuritogenesis and molecular mechanisms of ergosterol were investigated in wild-type and Aß precursor protein (APP)-overexpressing Neuro2a cells. The anti-amyloidosis properties of ergosterol were determined by evaluating in vitro Aß production and the potential inhibition of Aß-producing enzymes. Additionally, AD-associated transgenic C. elegans was utilized to investigate the in vivo attenuating effects of ergosterol. KEY FINDINGS: Ergosterol promoted neurite outgrowth in Neuro2a cells through the upregulation of the transmembrane protein Teneurin-4 (Ten-4) mRNA and protein expressions, phosphorylation of the extracellular signal-regulated kinases (ERKs), activity of cAMP response element (CRE), and growth-associated protein-43 (GAP-43). Furthermore, ergosterol enhanced neurite outgrowth in transgenic Neuro2A cells overexpressing either the wild-type APP (Neuro2a-APPwt) or the Swedish mutant APP (Neuro2a-APPswe) through the Ten-4/ERK/CREB/GAP-43 signaling pathway. Interestingly, ergosterol inhibited Aß synthesis in Neuro2a-APPwt cells. In silico analysis indicated that ergosterol can interact with the catalytic sites of ß- and γ-secretases. In Aß-overexpressing C. elegans, ergosterol decreased Aß accumulation, increased chemotaxis behavior, and prolonged lifespan. SIGNIFICANCE: Ergosterol is a potential candidate compound that might benefit AD patients by promoting neurite outgrowth, inhibiting Aß synthesis, and enhancing longevity.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Animales , Humanos , Caenorhabditis elegans/metabolismo , Longevidad , Proteína GAP-43 , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales Modificados Genéticamente/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proyección Neuronal
10.
Biochemistry (Mosc) ; 89(2): 322-340, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38622099

RESUMEN

Various environmental morphological and behavioral factors can determine the longevity of representatives of various taxa. Long-lived species develop systems aimed at increasing organism stability, defense, and, ultimately, lifespan. Long-lived species to a different extent manifest the factors favoring longevity (gerontological success), such as body size, slow metabolism, activity of body's repair and antioxidant defense systems, resistance to toxic substances and tumorigenesis, and presence of neotenic features. In continuation of our studies of mammals, we investigated the characteristics that distinguish long-lived ectotherms (crocodiles and turtles) and compared them with those of other ectotherms (squamates and amphibians) and endotherms (birds and mammals). We also discussed mathematical indicators used to assess the predisposition to longevity in different species, including standard indicators (mortality rate, maximum lifespan, coefficient of variation of lifespan) and their derivatives. Evolutionary patterns of aging are further explained by the protective phenotypes and life history strategies. We assessed the relationship between the lifespan and various studied factors, such as body size and temperature, encephalization, protection of occupied ecological niches, presence of protective structures (for example, shells and osteoderms), and environmental temperature, and the influence of these factors on the variation of the lifespan as a statistical parameter. Our studies did not confirm the hypothesis on the metabolism level and temperature as the most decisive factors of longevity. It was found that animals protected by shells (e.g., turtles with their exceptional longevity) live longer than species that have poison or lack such protective adaptations. The improvement of defense against external threats in long-lived ectotherms is consistent with the characteristics of long-lived endotherms (for example, naked mole-rats that live in underground tunnels, or bats and birds, whose ability to fly is one of the best defense mechanisms).


Asunto(s)
Envejecimiento , Longevidad , Animales , Estrés Oxidativo , Antioxidantes , Mamíferos
11.
Biochemistry (Mosc) ; 89(2): 341-355, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38622100

RESUMEN

The most important manifestation of aging is an increased risk of death with advancing age, a mortality pattern characterized by empirical regularities known as mortality laws. We highlight three significant ones: the Gompertz law, compensation effect of mortality (CEM), and late-life mortality deceleration and describe new developments in this area. It is predicted that CEM should result in declining relative variability of mortality at older ages. The quiescent phase hypothesis of negligible actuarial aging at younger adult ages is tested and refuted by analyzing mortality of the most recent birth cohorts. To comprehend the aging mechanisms, it is crucial to explain the observed empirical mortality patterns. As an illustrative example of data-directed modeling and the insights it provides, we briefly describe two different reliability models applied to human mortality patterns. The explanation of aging using a reliability theory approach aligns with evolutionary theories of aging, including idea of chronic phenoptosis. This alignment stems from their focus on elucidating the process of organismal deterioration itself, rather than addressing the reasons why organisms are not designed for perpetual existence. This article is a part of a special issue of the journal that commemorates the legacy of the eminent Russian scientist Vladimir Petrovich Skulachev (1935-2023) and his bold ideas about evolution of biological aging and phenoptosis.


Asunto(s)
Envejecimiento , Longevidad , Adulto , Humanos , Reproducibilidad de los Resultados , División Celular , Mortalidad
12.
Biochemistry (Mosc) ; 89(2): 356-366, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38622101

RESUMEN

Late in life, the body is at war with itself. There is a program of self-destruction (phenoptosis) implemented via epigenetic and other changes. I refer to these as type (1) epigenetic changes. But the body retains a deep instinct for survival, and other epigenetic changes unfold in response to a perception of accumulated damage (type (2)). In the past decade, epigenetic clocks have promised to accelerate the search for anti-aging interventions by permitting prompt, reliable, and convenient measurement of their effects on lifespan without having to wait for trial results on mortality and morbidity. However, extant clocks do not distinguish between type (1) and type (2). Reversing type (1) changes extends lifespan, but reversing type (2) shortens lifespan. This is why all extant epigenetic clocks may be misleading. Separation of type (1) and type (2) epigenetic changes will lead to more reliable clock algorithms, but this cannot be done with statistics alone. New experiments are proposed. Epigenetic changes are the means by which the body implements phenoptosis, but they do not embody a clock mechanism, so they cannot be the body's primary timekeeper. The timekeeping mechanism is not yet understood, though there are hints that it may be (partially) located in the hypothalamus. For the future, we expect that the most fundamental measurement of biological age will observe this clock directly, and the most profound anti-aging interventions will manipulate it.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Longevidad , Relojes Biológicos
13.
Biochemistry (Mosc) ; 89(2): 367-370, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38622102

RESUMEN

For most of their lifespan, the probability of death for many animal species increases with age. Gompertz law states that this increase is exponential. In this work, we have compared previously published data on the survival kinetics of different lines of progeric mice. Visual analysis showed that in six lines of these rapidly aging mutants, the probability of death did not strictly depend on age. In contrast, ten lines of progeric mice have survival curves similar to those of the control animals, that is, in agreement with Gompertz law, similar to the shape of an exponential curve upside down. Interestingly, these ten mutations cause completely different cell malfunctions. We speculate that what these mutations have in common is a reduction in the lifespan of cells and/or an acceleration of the transition to the state of cell senescence. Thus, our analysis, similar to the conclusions of many previously published works, indicates that the aging of an organism is a consequence of the aging of individual cells.


Asunto(s)
Envejecimiento , Longevidad , Animales , Ratones , Envejecimiento/fisiología , Senescencia Celular , Mutación
14.
Biochemistry (Mosc) ; 89(2): 371-376, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38622103

RESUMEN

The article describes the history of studies of survival data carried out at the Research Institute of Physico-Chemical Biology under the leadership of Academician V. P. Skulachev from 1970s until present, with special emphasis on the last decade. The use of accelerated failure time (AFT) model and analysis of coefficient of variation of lifespan (CVLS) in addition to the Gompertz methods of analysis, allows to assess survival curves for the presence of temporal scaling (i.e., manifestation of accelerated aging), without changing the shape of survival curve with the same coefficient of variation. A modification of the AFT model that uses temporal scaling as the null hypothesis made it possible to distinguish between the quantitative and qualitative differences in the dynamics of aging. It was also shown that it is possible to compare the data on the survival of species characterized by the survival curves of the original shape (i.e., "flat" curves without a pronounced increase in the probability of death with age typical of slowly aging species), when considering the distribution of lifespan as a statistical random variable and comparing parameters of such distribution. Thus, it was demonstrated that the higher impact of mortality caused by external factors (background mortality) in addition to the age-dependent mortality, the higher the disorder of mortality values and the greater its difference from the calculated value characteristic of developed countries (15-20%). For comparison, CVLS for the Paraguayan Ache Indians is 100% (57% if we exclude prepuberty individuals as suggested by Jones et al.). According to Skulachev, the next step is considering mortality fluctuations as a measure for the disorder of survival data. Visual evaluation of survival curves can already provide important data for subsequent analysis. Thus, Sokolov and Severin [1] found that mutations have different effects on the shape of survival curves. Type I survival curves generally retains their standard convex rectangular shape, while type II curves demonstrate a sharp increase in the mortality which makes them similar to a concave exponential curve with a stably high mortality rate. It is noteworthy that despite these differences, mutations in groups I and II are of a similar nature. They are associated (i) with "DNA metabolism" (DNA repair, transcription, and replication); (ii) protection against oxidative stress, associated with the activity of the transcription factor Nrf2, and (iii) regulation of proliferation, and (or these categories may overlap). However, these different mutations appear to produce the same result at the organismal level, namely, accelerated aging according to the Gompertz's law. This might be explained by the fact that all these mutations, each in its own unique way, either reduce the lifespan of cells or accelerate their transition to the senescent state, which supports the concept of Skulachev on the existence of multiple pathways of aging (chronic phenoptosis).


Asunto(s)
Envejecimiento , Longevidad , Humanos , Longevidad/fisiología , Envejecimiento/genética , Mutación , Estrés Oxidativo
15.
Lancet Neurol ; 23(5): 511-521, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631767

RESUMEN

Epilepsy diagnosis is often delayed or inaccurate, exposing people to ongoing seizures and their substantial consequences until effective treatment is initiated. Important factors contributing to this problem include delayed recognition of seizure symptoms by patients and eyewitnesses; cultural, geographical, and financial barriers to seeking health care; and missed or delayed diagnosis by health-care providers. Epilepsy diagnosis involves several steps. The first step is recognition of epileptic seizures; next is classification of epilepsy type and whether an epilepsy syndrome is present; finally, the underlying epilepsy-associated comorbidities and potential causes must be identified, which differ across the lifespan. Clinical history, elicited from patients and eyewitnesses, is a fundamental component of the diagnostic pathway. Recent technological advances, including smartphone videography and genetic testing, are increasingly used in routine practice. Innovations in technology, such as artificial intelligence, could provide new possibilities for directly and indirectly detecting epilepsy and might make valuable contributions to diagnostic algorithms in the future.


Asunto(s)
Inteligencia Artificial , Epilepsia , Humanos , Longevidad , Epilepsia/terapia , Convulsiones/diagnóstico , Comorbilidad
16.
Compr Rev Food Sci Food Saf ; 23(3): e13342, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38634173

RESUMEN

Mitochondrial dysfunction increasingly becomes a target for promoting healthy aging and longevity. The dysfunction of mitochondria with age ultimately leads to a decline in physical functions. Among them, biogenesis dysfunction and the imbalances in the metabolism of reactive oxygen species and mitochondria as signaling organelles in the aging process have aroused our attention. Dietary intervention in mitochondrial dysfunction and physical decline during aging processes is essential, and greater attention should be directed toward healthful legume intake. Legumes are constantly under investigation for their nutritional and bioactive properties, and their consumption may yield antiaging and mitochondria-protecting benefits. This review summarizes mitochondrial dysfunction with age, discusses the benefits of legumes on mitochondrial function, and introduces the potential role of legumes in managing aging-related physical decline. Additionally, it reveals the benefits of legume intake for the elderly and offers a viable approach to developing legume-based functional food.


Asunto(s)
Fabaceae , Enfermedades Mitocondriales , Humanos , Anciano , Envejecimiento , Longevidad , Mitocondrias/metabolismo , Verduras , Enfermedades Mitocondriales/metabolismo
17.
Sci Rep ; 14(1): 7799, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565609

RESUMEN

It is becoming increasingly evident that the myriad of microbes in the gut, within cells and attached to body parts (or roots of plants), play crucial roles for the host. Although this has been known for decades, recent developments in molecular biology allow for expanded insight into the abundance and function of these microbes. Here we used the vinegar fly, Drosophila melanogaster, to investigate fitness measures across the lifetime of flies fed a suspension of gut microbes harvested from young or old flies, respectively. Our hypothesis was that flies constitutively enriched with a 'Young microbiome' would live longer and be more agile at old age (i.e. have increased healthspan) compared to flies enriched with an 'Old microbiome'. Three major take home messages came out of our study: (1) the gut microbiomes of young and old flies differ markedly; (2) feeding flies with Young and Old microbiomes altered the microbiome of recipient flies and (3) the two different microbial diets did not have any effect on locomotor activity nor lifespan of the recipient flies, contradicting our working hypothesis. Combined, these results provide novel insight into the interplay between hosts and their microbiomes and clearly highlight that the phenotypic effects of gut transplants and probiotics can be complex and unpredictable.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Drosophila , Drosophila melanogaster , Longevidad
18.
Genet Sel Evol ; 56(1): 25, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565991

RESUMEN

BACKGROUND: Longevity and resilience are two fundamental traits for more sustainable livestock production. These traits are closely related, as resilient animals tend to have longer lifespans. An interesting criterion for increasing longevity in rabbit could be based on the information provided by its gut microbiome. The gut microbiome is essential for regulating health and plays crucial roles in the development of the immune system. The aim of this research was to investigate if animals with different longevities have different microbial profiles. We sequenced the 16S rRNA gene from soft faeces from 95 does. First, we compared two maternal rabbit lines with different longevities; a standard longevity maternal line (A) and a maternal line (LP) that was founded based on longevity criteria: females with a minimum of 25 parities with an average prolificacy per parity of 9 or more. Second, we compared the gut microbiota of two groups of animals from line LP with different longevities: females that died/were culled with two parities or less (LLP) and females with more than 15 parities (HLP). RESULTS: Differences in alpha and beta diversity were observed between lines A and LP, and a partial least square discriminant analysis (PLS-DA) showed a high prediction accuracy (> 91%) of classification of animals to line A versus LP (146 amplicon sequence variants (ASV)). The PLS-DA also showed a high prediction accuracy (> 94%) to classify animals to the LLP and HLP groups (53 ASV). Interestingly, some of the most important taxa identified in the PLS-DA were common to both comparisons (Akkermansia, Christensenellaceae R-7, Uncultured Eubacteriaceae, among others) and have been reported to be related to resilience and longevity. CONCLUSIONS: Our results indicate that the first parity gut microbiome profile differs between the two rabbit maternal lines (A and LP) and, to a lesser extent, between animals of line LP with different longevities (LLP and HLP). Several genera were able to discriminate animals from the two lines and animals with different longevities, which shows that the gut microbiome could be used as a predictive factor for longevity, or as a selection criterion for these traits.


Asunto(s)
Microbioma Gastrointestinal , Longevidad , Embarazo , Femenino , Animales , Conejos , Longevidad/genética , Tamaño de la Camada/genética , ARN Ribosómico 16S/genética , Fenotipo
19.
Sci Adv ; 10(14): eadk8823, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38569037

RESUMEN

Organisms across taxa face stresses including variable temperature, redox imbalance, and xenobiotics. Successfully responding to stress and restoring homeostasis are crucial for survival. Aging is associated with a decreased stress response and alterations in the microbiome, which contribute to disease development. Animals and their microbiota share their environment; however, microbes have short generation time and can rapidly evolve and potentially affect host physiology during stress. Here, we leverage Caenorhabditis elegans and its simplified bacterial diet to demonstrate how microbial adaptation to oxidative stress affects the host's lifespan and stress response. We find that worms fed stress-evolved bacteria exhibit enhanced stress resistance and an extended lifespan. Through comprehensive genetic and metabolic analysis, we find that iron in stress-evolved bacteria enhances worm stress resistance and lifespan via activation of the mitogen-activated protein kinase pathway. In conclusion, our study provides evidence that understanding microbial stress-mediated adaptations could be used to slow aging and alleviate age-related health decline.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Longevidad/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Estrés Oxidativo , Dieta , Bacterias/genética , Bacterias/metabolismo
20.
Aging Cell ; 23(4): e14157, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38558485

RESUMEN

A recently proposed principal law of lifespan (PLOSP) proposes to extend the whole human lifespan by elongating different life stages. As the preborn stage of a human being, gestation is the foundation for the healthy development of the human body. The antagonistic pleiotropy (AP) theory of aging states that there is a trade-off between early life fitness and late-life mortality. The question is whether slower development during the gestation period would be associated with a longer lifespan. Among all living creatures, the length of the gestation period is highly positively correlated to the length of the lifespan, although such a correlation is thought to be influenced by the body sizes of different species. While examining the relationship between lifespan length and body size within the same species, dogs exhibit a negative correlation between lifespans and body sizes, while there is no such correlation among domestic cats. For humans, most adverse gestational environments shorten the period of gestation, and their impacts are long-term. While many issues remain unsolved, various developmental features have been linked to the conditions during the gestation period. Given that the length of human pregnancies can vary randomly by as long as 5 weeks, it is worth investigating whether a slow steady healthy gestation over a longer period will be related to a longer and healthier lifespan. This article discusses the potential benefits, negative impacts, and challenges of the relative elongation of the gestation period.


Asunto(s)
Envejecimiento , Longevidad , Embarazo , Femenino , Humanos , Animales , Perros , Gatos , Tamaño Corporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...